▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Maximal chains in second-order arithmetic

Emanuele Frittaion

Sendai Logic Seminar, June 2015

Height

Let *P* be a well-founded partial order. By recursion we define a function ht: $P \rightarrow$ On by letting for all $y \in P$

$$ht(y) = \sup\{ht(x) + 1 \colon x <_P y\} = \{ht(x) \colon x <_P y\}.$$

The **height** of P is

$$\mathsf{ht}(P) = \sup\{\mathsf{ht}(x) + 1 \colon x \in P\} = \{\mathsf{ht}(x) \colon x \in P\}.$$

A chain C on P is **maximal** if its order type equals ht(P). A chain C on P is **strongly maximal** if for every $\beta < ht(P)$ there exists $x \in C$ such that $ht(x) = \beta$.

Theorems

Theorem (Wolk 1967)

Every wpo has a strongly maximal chain.

Theorem Let P be a well-founded partial order such that

$$P_{\beta} = \{x \in P \colon \operatorname{ht}(x) = \beta\}$$

is finite for all $\beta < ht(P)$. Then P has a strongly maximal chain.

Theorem (Schmidt 1981)

Let P be a well-founded partial such that $\{ht(x): x \in A\}$ is finite for every antichain A of P. Then there exists a maximal chain.

Formalization

The height of a well-founded partial order is not definable in RCA_0 . Actually, the existence of the height is equivalent to ATR_0 over RCA_0 . The following version of Wolk's theorem has been studied by Marcone and Shore:

"Every wpo has a chain such that every other chain embeds into it"

No mention of the height. Existence of a maximal chain. The above statement is equivalent to ATR_0 as well.

However, if we want to study these theorems, we must (can) talk about the height. A possible approach is to consider partial orders along with their height. Hence, the notion of **ranked partial order**.

Results 00000000000000

イロト 不得 トイヨト イヨト 二日

Definition (RCA₀)

A ranked partial order is a triple $\mathcal{P} = (P, h, \alpha)$, where P is a partial order, α is a **linear order** and $h: P \to \alpha$ is a function from P onto α which satisfies

$$h(y) = \sup\{h(x) + 1 \colon x <_P y\} \text{ for all } y \in P,$$

that is:

(H1) $x <_P y$ implies h(x) < h(y)(H2) $\beta < h(y)$ implies $\beta \le h(x)$ for some $x <_P y$. We say that \mathcal{P} has **height** α .

We could require h to satisfy the strongest condition

$$h(y) = \{h(x) \colon x <_P y\} \text{ for all } y \in P,$$

that is:

(H1)
$$x <_P y$$
 implies $h(x) < h(y)$
(H3) $\beta < h(y)$ implies $\beta = h(x)$ for some $x <_P y$.

Lemma (RCA₀)

Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. Then P is well-founded iff α is well-ordered iff h satisfies (H3).

Definition (RCA₀)

Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. We say that a chain $C \subseteq P$ is

- strongly maximal if for all β < α there exists a (necessarily unique) x ∈ C with h(x) = β;
- maximal if there exists an embedding from α to C.

Statements

SMC⁺ Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is well-founded and $P_{\beta} = \{x \in P : h(x) = \beta\}$ is finite for every $\beta < \alpha$, then \mathcal{P} has a **strongly maximal chain**.

Statements

SMC⁺ Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is well-founded and $P_{\beta} = \{x \in P : h(x) = \beta\}$ is finite for every $\beta < \alpha$, then \mathcal{P} has a **strongly maximal chain**.

MC⁺ Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is well-founded, and $P_{\beta} = \{x \in P : h(x) = \beta\}$ is finite for every $\beta < \alpha$, then \mathcal{P} has a **maximal chain**.

・ロト ・四ト ・ヨト ・ヨ

Statements

SMC⁺ Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is well-founded and $P_{\beta} = \{x \in P : h(x) = \beta\}$ is finite for every $\beta < \alpha$, then \mathcal{P} has a **strongly maximal chain**.

- MC⁺ Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is well-founded, and $P_{\beta} = \{x \in P : h(x) = \beta\}$ is finite for every $\beta < \alpha$, then \mathcal{P} has a **maximal chain**.
- SMC Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is a wpo, then \mathcal{P} has a **strongly maximal chain**.

Statements

SMC⁺ Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is well-founded and $P_{\beta} = \{x \in P : h(x) = \beta\}$ is finite for every $\beta < \alpha$, then \mathcal{P} has a **strongly maximal chain**.

- MC⁺ Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is well-founded, and $P_{\beta} = \{x \in P : h(x) = \beta\}$ is finite for every $\beta < \alpha$, then \mathcal{P} has a **maximal chain**.
- SMC Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is a wpo, then \mathcal{P} has a **strongly maximal chain**.
 - MC Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is a wpo, then \mathcal{P} has a **maximal chain**.

Statements

SMC⁺ Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is well-founded and $P_{\beta} = \{x \in P : h(x) = \beta\}$ is finite for every $\beta < \alpha$, then \mathcal{P} has a **strongly maximal chain**.

- MC⁺ Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is well-founded, and $P_{\beta} = \{x \in P : h(x) = \beta\}$ is finite for every $\beta < \alpha$, then \mathcal{P} has a **maximal chain**.
- SMC Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is a wpo, then \mathcal{P} has a **strongly maximal chain**.
 - MC Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is a wpo, then \mathcal{P} has a **maximal chain**.
- MCA Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is well-founded and $\{h(x) : x \in A\}$ is finite for every antichain A of P, then \mathcal{P} has a **maximal chain**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Trivially,

- $SMC^+ \rightarrow SMC + MC^+$
- SMC \rightarrow MC
- $MC^+ \rightarrow MC$
- $MCA \rightarrow MC$

Theorem (RCA_0)

The following are equivalent:

- $1. \ ACA_0$
- 2. SMC⁺
- 3. SMC
- 4. MC⁺

-

Question Does MC imply ACA₀?

Question

What is the strength of MCA?

The classical proof of MCA "works" in ATR_0 . The original inductive argument requires some technical annoying adjustments (I still have to write the details).

We skip the proof of SMC^+ in ACA_0 . The classical proof is based on Rado's selection lemma, which is equivalent to ACA_0 .

 $\mathsf{SMC}\to\mathsf{ACA}_0.$

Assume

SMC Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is a wpo, then \mathcal{P} has a strongly maximal chain.

We build a partial order P of height ω^2 . P is an ω -sum of partial orders P_m 's, each of height ω . The role of P_m is to code whether $m \in \operatorname{ran} f$. If $m \notin \operatorname{ran} f$, P_m is the disjoint sum of an ω -chain $a_m <_P a_{m,0} <_P a_{m,1} <_P \ldots$ and a single point b_m . If f(n) = m, P_m is the disjoint sum of a finite chain $a_m <_P a_{m,0} <_P < a_{m,n-1}$ and an ω -chain $b_m <_P b_{m,n} <_P b_{m,n+1} <_P b_{m,n+2} \ldots$ It's clear how to define h.

Given a strongly maximal chain C, we have $m \in \operatorname{ran} f$ iff $b_m \in C$.

 $\mathsf{MC}^+\to\mathsf{ACA}_0.$

Assume

MC⁺ Let $\mathcal{P} = (P, h, \alpha)$ be a ranked partial order. If P is well-founded, and $P_{\beta} = \{x \in P : h(x) = \beta\}$ is finite for every $\beta < \alpha$, then \mathcal{P} has a maximal chain.

Let $P = (T, \subseteq)$, where $T \subseteq \mathbb{N}^{<\mathbb{N}}$ is defined by $\sigma \in T$ if and only if for all $m < |\sigma|$

- $\sigma(m) = 0
 ightarrow (orall n < |\sigma|) f(n)
 eq m$ (m hasn't entered ran f yet)
- $\sigma(m) = n + 1 > 0 \rightarrow f(n) = m \ (\sigma \text{ witnesses } m \in \operatorname{ran} f)$

It's not difficult to show that $\mathcal{P} = (P, h, \omega)$, where $h(\sigma) = |\sigma|$, is a ranked partial order (of height ω) with finite levels.

A maximal chain is an ω -chain, from which we can compute (the unique) path of T, and hence the range of f.

It turns out that:

- $\mathsf{SMC}(\omega^2) \to \mathsf{ACA}_0$
- $MC^+(\omega) \rightarrow ACA_0$.

Question

What about SMC(ω), MC(ω), and MCA(ω)?

Remark

We can define the height of a partial order P by **primitive** recursion, whenever $x <_P y$ implies x < y. Define $h: P \rightarrow \omega$ by

$$h(y) = \sup\{h(x) + 1 \colon x <_P y\}.$$

By definition, (H1) and (H2) hold. The range of h is an initial segment of ω .

Lemma

Over RCA₀, the following are equivalent:

- CAC
- MCA(ω)
- MC(ω)

We only show the reversal.

 $MC(\omega) \rightarrow CAC$

Bootstrap: $MC(\omega) \to B\Sigma_2^0$. We omit the proof. Let us prove st-RT₂². Let $f: [\mathbb{N}]^2 \to 2$ be transitive on 0, that is $(\forall x < y < z)(f(x, y) = f(y, z) = 0 \to f(x, z) = 0)$. Define a partial order *P* by

$$x <_P y$$
 if $x < y \land f(x, y) = 0$.

Results 00000000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

Define
$$h: P \to \omega$$
 by $h(y) = \sup\{h(x) + 1: x <_P y\}$.

- *h* is bounded. By BΣ₂⁰ there exists *n* < ω such that
 H = {*x* ∈ *P*: *h*(*x*) = *n*} is infinite. Then *H* is an infinite
 antichain on *P*, and so an infinite 1-homogeneous set for *f*.
- P is not a wpo. Let (x_n) be a bad sequence. We may assume n < m implies x_n < x_m. Then {x_n: n ∈ ℕ} is an infinite 1-homogeneous set for f.
- P = (P, h, ω) is a ranked partial order of height ω and P is a wpo. By MC(ω), there exists an ω-chain, say (x_n) such that n < m implies x_n <_P x_m. Then {x_n: n ∈ ℕ} is an infinite 0-homogeneous set for f.

くしゃ 本理 アメヨア オヨア しゅうぐう

We don't know whether $SMC(\omega)$ already implies ACA_0 . The feeling is that $SMC(\omega)$ is stronger than $MC(\omega)$ (which is equivalent to CAC). We show that $SMC(\omega)$ implies the following weak version of Ramsey theorem (in Dorais' blog this is called "Mixed Ramsey theorem"):

For every coloring $f: [\mathbb{N}]^2 \to 2$ there exists either an infinite 0-homogeneous path (that is an infinite set $\{x_0 < x_1 < \ldots\}$ such that $f(x_n, x_{n+1}) = 1$ for all n), or an infinite 1-homogeneous set

This statement easily implies CAC. Its strength seems to be unknown.

Proof

Given $f: [\mathbb{N}]^2 \to 2$, define $x <_P y$ if x < y and there exists $x = a_0 < a_1 < \ldots < a_k = y$ such that $f(a_i, a_{i+1}) = 0$ for all *i*. By recursion define $h: \mathbb{N} \to \mathbb{N}$ such that $h(y) = \sup\{h(x): x <_P y\}$.

- Suppose *h* is bounded. By $B\Sigma_2^0$, *P* has an infinite antichain, which is an infinite 1-homogeneous set for *f*.
- Suppose P is not a wpo, and let (x_k) be a bad sequence. We may assume that (x_k) is an increasing sequence of natural numbers. Then {x_k: k ∈ N} is an infinite 1-homogeneous set for f.

Suppose P = (P, h, ω) is a ranked partial order of height ω and P is a wpo. By SMC(ω), there exists a strongly maximal chain, say (x_n) such that n < m implies x_n <_P x_m and h(x_n) = n. We claim that f(x_n, x_{n+1}) = 0 for all n. Suppose f(x_n, x_{n+1}) = 1. As x_n <_P x_{n+1}, there exists x_n = a₀ < a₁ < ... < a_k = x_{n+1} with k > 1 such that a_i <_P a_{i+1} for all i. It follows that h(x_{n+1}) ≥ n + k > n + 1, a contradiction.

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うへつ

Summary

- $ATR_0 \rightarrow MCA$
- $\mathsf{ACA}_0 \leftrightarrow \mathsf{SMC}^+ \leftrightarrow \mathsf{SMC} \leftrightarrow \mathsf{SMC}(\omega^2) \leftrightarrow \ \mathcal{MC}^+ \leftrightarrow \mathsf{MC}^+(\omega)$
- **CAC** \leftrightarrow MCA(ω) \leftrightarrow MC(ω)

Question

- $SMC(\omega) \rightarrow ACA_0$?
- $MC \rightarrow ACA_0$?

Results 00000000000000

Final Remark

Marcone, Montalban, and Shore proved that every

hyperarithmetically generic set computes a maximal chain in every computable wpo.

In particular, in every computable wpo there is a maximal chain that does not compute $0^\prime.$

However, it can be still the case that $MC \to ACA_0$ by means of a pseudo wpo.

Results 0000000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Thanks for your attention